Radio
Boulevard
Classic Pre-WWII Ham Gear Part 1 - 1928 to 1935 (Part 2 - 1936 to 1941)
photo right: Station W1AVJ of
Robt. Byron of Concord, NH |
|
Classic Pre-WWII Ham Gear - Part 1 - 1928 to 1935
|
Pilot Electric Manufacturing Company - "Pilot Wasp" - Model K-101 Though Pilot's advertising claimed they had been in business since 1908 and the company had used several different names during that time, "Pilot Electric Manufacturing Company" was officially founded in 1922 by Isidor Goldberg in Brooklyn, New York. Pilot Electric Manufacturing Company also claimed to be "The World's Largest Radio Parts Plant" in the twenties and they did build all of the parts supplied with their kits. Some of the famous employees of Pilot were Robert Kruse, Alfred Ghirardi and John Geloso. David Grimes was a Contributing Editor for "Radio Design" - Pilot's magazine. Though not the first Shortwave receiver kit offered by Pilot, the three-tube "Wasp" was certainly their first really popular Shortwave receiver kit. In 1928 the selling price was $21.75 including the coils. The "Wasp" was designed by Robert Kruse and Milton B. Sleeper. The plug-in coils selected the tuning ranges that covered 500 meters to 17 meters or about 600kc up to 17.6mc. A complete coil set featured five coils each with color-coded handles for identification. The three tubes were usually 201-A and the circuit used a regenerative detector followed by two stages of transformer coupled AF amplification. The kit included detailed instructions along with an assembly drawing. Builders were warned to adhere to the wiring layout shown on the drawing or performance would suffer. The circuit was built on a bakelite board for the chassis and a mahogany colored bakelite panel. The "Wasp" was introduced just as Shortwave Broadcasting was beginning to grow and everyone wanted to tune in to stations located in foreign countries. The "Wasp" was very popular and soon spawned a newer, more sophisticated successor, the "Super-Wasp." |
|
Pilot Electric Manufacturing Co., Pilot Radio & Tube Corp. - "Super-Wasp" Battery Model K-110 The four-tube "Super-Wasp" kit was introduced in early-1929 and featured a screen-grid tube for an RF amplifier along with regenerative detector and two-stage AF amplifier. The "Super-Wasp" kit sold for $29.50 including the five pairs of plug-in coils providing tuning coverage from 500 meters to 14 meters or about 600kc up to about 21.5mc. Detailed instructions, including a full size blue print, made assembly relatively easy and assured that each "Super-Wasp" could perform pretty much as expected. Since these were kits though, build quality was highly variable and dependent on the assembler's experience. Pilot's magazine "Radio Design" was always including updates along with suggestions for improving performance, consequently most "Super-Wasp" receivers found today will have some modifications or non-original parts. The stock circuit used a type 22 screen-grid tube as an RF amplifier, a 201-A as a regenerative detector and a 201-A tube as the first AF amplifier and a UX-112A as the second AF amplifier. The user could substitute a 201A for the last audio stage and reduce the plate voltage and bias voltage if a UX-112A was not available. To the right of the K-110 is one of the modular units Pilot called "Redi-Blox." This one is a single-stage transformer input audio amplifier using a type UX-112A tube. This module could be added for a third audio amplifier stage if the user thought it necessary. Pilot offered "Redi-Blox" assembled modules in the late twenties to enthusiasts to help ease the mechanical side of kit building. Around the time that the "Super-Wasp" was introduced, Pilot changed the name of the company to "Pilot Radio & Tube Corporation" (April, 1929.) "Super-Wasp" receivers were quite popular and sometimes were found in ham shacks of the late twenties and early thirties. By today's standards, the "Super-Wasp" is a very primitive shortwave/ham receiver but performance can be surprisingly good if the operator has patience and is willing to put in a few nights learning how the "Super-Wasp" works. All controls interact with each other making tuning sometimes tedious and demodulating SSB or CW signals requires the detector to be oscillating which increases the instability. However, patience will be rewarded and it is fun to use a 1929 battery-operated receiver to monitor one of the many AM ham nets on 80 meters, especially when running the audio to a vintage horn speaker - talk about "broadcast quality audio" - well, 1929 style anyway! When examining vintage QSL cards that date from about 1930 up to about 1934, it's surprising how many times the Pilot Super Wasp is listed as the station receiver. In fact, the header photo showing station W1AVJ has a Pilot AC Super Wasp on the desk. The AC Super Wasp is profiled next,... |
|
Pilot Radio & Tube Corporation - A.C. "Super-Wasp" Model K-115 The improved "Socket-Power" A.C. "Super-Wasp" kit was available by late 1929 and sold for $34.50. The tubes used were a type 24A cathode and screen grid tube for the RF amplifier, a cathode type 27 for the regenerative detector and two 27s for the AF amplifier. All of the tubes operated on 2.5vac at 7 amps for the heaters and the K-111 power pack supplied all of the A+ and B+ voltages required. The K-112 power pack can also work with the A.C. Super-Wasp even though it was for a receiver that used 45 tubes (just don't use the +HV and ground the B-/CT return to power up the A.C. Super-Wasp.) The lower right-hand switch was wired back to the K-111 to provide an "on-off" switch at the receiver (other power packs provided the same option.) The first AF amplifier was a resistance coupled amplifier while the second AF amplifier was transformer coupled along with an output transformer. There was a considerable design effort put into the A.C. Super-Wasp to eliminate hum since most operation was going to be using earphones. Hum reduction was one of the reasons for the RC coupled AF stage. Pilot also stipulated that only their own Pilotron tubes would perform correctly in the A.C. "Super-Wasp." Pilot plug-in coils are used for five tuning ranges covering 600kc up to 21.5mc. Shown to the left of the K-115 is the K-120 Audio Booster Unit, another Pilot module (though it is not called "Redi-Blox") for builders, that could be used if loud speaker volume was desired. All of the Pilot "Wasp" and "Super-Wasp" receivers found today will vary greatly in the quality of workmanship. Since these receivers were kits, the assembler may have had little or no experience in soldering, wiring or mechanical building. As a result, don't be hasty to judge a poor performing set as a "bad design." Check the receiver over carefully. An inspection of the soldering will usually be a clue into the level of workmanship you will encounter in your receiver. When everything is correct, the Pilot "Wasp" and "Super-Wasp" receivers are fine performers considering their vintage and a lot fun to use. |
|
National Company, Inc. - SW-5 "Thrill Box" The National Co. started in business manufacturing toys and parts in 1914 (as the National Toy Co.) By the mid-twenties, National Co., Inc. had long ago dropped the "toy" from their name and was supplying parts for the Browning-Drake BC receiver kit and also started producing radio parts. Mechanical Engineer James Millen joined the company as General Manager and Chief Engineer in 1928. Millen was a Stevens Institute graduate and an enthusiastic ham so it was natural that he guided National into the ham/shortwave receiver market. This move happened to coincide with the new and developing shortwave broadcasting which was becoming popular with a new audience, the "shortwave listeners" or SWLs. National introduced the SW-5 "Thrill Box" in 1930. The name "Thrill Box" implied how exciting it was for the SWLs to receive foreign broadcasts direct from around the world. Though primarily designed for the SWL, the SW-5 could also be found in many ham shacks in the early 1930s. It was an expensive receiver with selling prices usually over $100 with the power supply. Robert Kruse, of the Pilot Wasp and Super Wasp fame, was involved in some of the design work in developing the SW-5 through his laboratory in Hartford, Connecticut and with several visits to National's lab. The circuit was a five tube receiver using a regenerative detector (24-A) with TRF stage (24-A,) audio driver (27) and P-P audio output (2-27.) The coil sets initially covered 1.5 to 30MC in five sets but eventually several other coil sets were added along with bandspread coil sets. The first coil sets were color coded for identification. The receiver was powered by a separate power supply that provided the 2.5vac filament voltage and approximately 180vdc B+. The tuning dial was illuminated and projected onto a frosted viewing screen. The left hand control is the regeneration and the right hand control is an antenna trimmer adjustment. There was a "Battery Model" SW-5 available and a special "Low Drain Battery Model" that used 2-volt tubes that ran on an air-cell battery that was supplied with the receiver. There was also a "Special Broadcast Model" that had P-P 45 tubes in the audio output. Early SW-5 receivers may have been available as a kit similar to the Pilot Wasp sets. Some National receivers (SW-5 and SW-3 mainly) will have a decal or label stating that the unit was built at Jackson Research Laboratory, however this was a company that was solely owned by National and was located adjacent to the National plant. Labeling receivers as built at Jackson Labs was a form of product protection that was the result of a broad suit brought against all radio manufacturers by Cardwell sighting the use of their variable condenser patent. The suit was not successful but National kept the Jackson name around for a while afterwards. Go to "Military and Commercial Communications Gear Part 1" to see and read about the U.S. Navy RAD-2, a National SW-5 built for shipboard use in 1932. |
|
National Company, Inc. - AC SW-3 (AC Version) National introduced the three tube SW-3 in 1931. It was a regenerative detector with RF amp and AF amp utilizing plug-in coils. There was an AC model that ran off an accessory National power supply and a DC model that was operated with batteries. The DC model also had a switch under the lid to disconnect the A battery. James Millen and the National engineers put considerable effort into the SW-3 design to achieve maximum performance in a three-tube regenerative receiver. Shielding was carefully developed as was the coil design to allow both general coverage coil and amateur bandspread coils to be used. The end result was a little receiver that had amazing capabilities and was very stable at the point of oscillation. The SW-3 had a long production life and was produced in fairly large numbers. Coil sets were available for a wide range of frequencies from longwave to 30MC, along with the bandspread sets for the amateur bands. Later, the SW-3 became so popular as a stand-by receiver that National even offered it after WWII for a short time as the SW-3 "Universal" using three octal tubes. Parts and coils were available from National up well into the fifties. Probably the best testament to the SW-3 performance is in a photograph that is in a mid-thirites QST showing a ham station that used a full-size rack Collins built transmitter along with the station receiver - the SW-3 - certainly not typical but it says something about the SW-3 performance capabilities. |
|
Hammarlund Mfg. Co., Inc. - Comet Pro
with Crystal Filter Oscar Hammarlund immigrated from Sweden in 1882 to work for the Elgin Watch Company. In 1886, he became Superintendent of Western Electric's Chicago plant. Six years later, Hammarlund started working for the Gray National Company. His main project there was the Teleautograph machine. In 1910, Hammarlund founded his own company, The Hammarlund Manufacturing Company. Initially, the company built gadget-type devices but soon became involved with Western Union call boxes. An interest in wireless led the company into the radio component business and their variable condenser designs became an industry standard. In the mid-1920s, Hammarlund formed a partnership called Hammarlund-Roberts Co. specifically to offer kits for AM Broadcast radios using Hammarlund parts. By 1930, home radio technology had evolved to the point where kits were no longer practical or popular and Hammarlund-Roberts went out of business. That didn't affect Hammarlund Mfg. Co., Inc. since they were ready to enter into the shortwave receiver market with the introduction of their new Comet All Wave Receiver, a superheterodyne receiver, in 1931. The superheterodyne manufacturing license had just become available from RCA in early-1930 giving Hammarlund sufficient time to engineer their new receiver. Before the Comet was introduced however, Hammarlund had offered a three-tube shortwave receiver as a kit. It was patterned after the Pilot Wasp and its sales most likely gave Hammarlund an interest in entering the shortwave receiver market. With the Comet's 1931 introduction, Hammarlund decided to offer a real improvement to the typical shortwave receiver of the day. At the time, the majority of hams and many professionals considered the regenerative detector (with TRF stages proceeding it and AF stages following it) to be the most sensitive type of receiver. It had a very low noise figure and with the proper antenna and operator skill, reception results could be amazing. The superheterodyne on the other hand, while fine for broadcast reception, was considered too noisy and not sensitive enough for acceptable shortwave performance. Hammarlund hoped to prove that with careful design and quality construction a shortwave superhet would be easier to operate and provide more consistent reception results thus reducing the skill that was required to obtain the same performance results using a regenerative detector receiver. Arguably, the Comet and its later successor, the Comet Pro, changed how SWLs, Hams and Professionals listened to shortwave signals. It was the first successful commercially-built shortwave superheterodyne offered to the communications receiver market (ham or professional.) Hammarlund advertised the Comet Pro as "The World's Finest Shortwave Receiver" and it certainly was built with high quality parts and high quality mechanical assemblies. Performance for the time was superb. The first versions of the Comet Pro (actually the Comet All Wave Receiver) used 24A, 35, 27 and 47 type tubes in an eight tube circuit that had no RF amplifier and utilized two unshielded plug-in coils - WL = Wave Length (mixer) and OSC = Oscillator - to change tuning ranges. The receiver was sometimes installed in a console cabinet. The receiver had a built-in power supply (with type 80 rectifier,) used a field coil speaker and came with a set of four pairs of coils covering 250M to 16M. An optional AM BC band (240-550M) coil set was available. The plug-in coils were wound on ceramic forms and had wooden handles for easy removal. Early table top cabinets were made of wood (painted black) with a metal front panel. In 1932, the audio output 47 was changed to a 27 and the field coil speaker connection eliminated. An earphone jack was provided in parallel with the audio output that was a direct plate connection. This implies that an audio output transformer would still be used at the loud speaker or that an input transformer would be used for the sometimes required external audio amplifier. Individual shields for each plug-in coil were added to this version. The OSC coil wiring was changed at this time. Additionally, "Pro" was added to the Comet name, implying that the receiver had evolved into a "professional level" of quality and performance and, by January 1933, the Comet Pro was fully a shortwave communications receiver. The tubes had been changed to type 57 and 58 types along with the addition of an audio output transformer to couple the 2A5 audio output to a 4000 ohm Z load - usually a loud speaker with matching transformer. The new audio output transformer also had a tapped winding for the earphone output. The antenna input was changed to allow a dipole feed line to be used and the WL coil's wiring was changed to accommodate the new antenna connections. The standard cabinet had been changed to an all-metal construction, however the wooden table top cabinet was still available on request. Later in 1933, a crystal filter option was added, then a 10M coil set option and finally, in Sept.1933, an Amplified AVC option was offered requiring the addition of a 2B7 tube to the circuit bringing the tube count up to nine. The "arc" dials set the WL and OSC condensers and then bandspread (the vertical dial) is used to tune in stations around the general settings of the WL and OSC condensers. The bandspread dial is illuminated and projected onto a frosted viewing window. The BFO adjustment is a "swing-arm" lever accessed under the lid of the cabinet. The Comet Pro listed for $150 not including tubes but usually sold for around $115 complete from discount dealers like Leeds. The usual sales procedure was to offer the Comet Pro chassis and then add options like the metal cabinet, Crystal Filter, AVC and tubes which then pushed the selling price up to around $150. Production continued up to early 1936. Hammarlund referred to the Comet Pro as a "Professional Receiver" and it was indeed used by many professionals, both military and commercial. It was also taken on several expeditions to the Arctic and Antarctic. The Comet Pro was also popular with amateurs and could be found in many ham shacks in the thirties. For its time, the Comet Pro was a first-class superheterodyne receiver that was well-built and performed quite well when compared to its early competition that was mostly composed of homebrew regenerative TRF receivers. Eastern Radio Specialty Company was located in New York City and built many different kinds of ham accessories during the mid-1930s. Their brand name was "PEAK" and the P-11 Pre-selector was probably their most successful product. The P-11 used two type 58 tubes as TRF amplifiers. The tuning range was from 200 meters down to 14 meters (1.5 to 21.5MC) in three tuning ranges using built in coils. The P-11 had a built-in 2.5vac transformer to supply the tube heaters and the dial lamp with power but B+ had to come from the receiver. This was usually easy to tap into and the current draw of two RF amplifiers was going to be minimal. The circuit used electron coupled variable regeneration for its gain control (left knob.) The power on switch (right knob) also controls the routing of the station antenna as either bypassing the P-11 in OFF or through the P-11 when ON. The PEAK P-11 listed for $33.00 but, if the purchaser was a licensed ham he was automatically given a 40% discount from Eastern Radio Specialty, net price was then $19.80. The P-11 was first advertised in December 1934 QST. |
|
National Company, Inc. RHM, AGS, "Single Signal"AGS-X
As mentioned, the RHM was National's first superhet but only a handful were built. To take advantage of the prestige the Government contract had given them (and to profit through additional sales to the general public,) National adapted the RHM receiver for commercial and ham use and dubbed it the AGS. It was an expensive receiver selling for $265 (with all accessories) in 1933. Frequency coverage was improved to allow better coverage of the ham bands, 1.5mc up to 20mc. The RHM had used first class materials and components throughout and the AGS was built to the same specifications resulting in the same high performance and reliability that the RHM had. National's advertising implies that after the initial DOC contract was fulfilled with RHM receivers, National continued to supply AGS receivers to airports and other commercial users from late-1932 up to the introduction of the HRO receiver in October 1934 (first deliveries were in early 1935.) photo left: AGS-X sn: F-151 from 1934. This receiver has its complete set of 27 coils. 15 general coverage coils for five ranges from 1.5mc to 20mc and its complete bandspread coil set for 160M, 80M, 40M and 20M coverage (12 coils.) The second coil holder is mounted on top of the rack. The Lamb crystal filter uses a 500kc crystal (as does the FBX receiver) to match the IF. The AGS-X also moved the BFO frequency control from inside the receiver to the front panel. AGS-X F-151 has the air-trimmers for its IF adjustments indicating it's a late-production receiver (it's from the last production run and 151 receivers into that run would indicate it's one of the last AGS-X receivers built.) I constructed the metal frame rack. It's based on a table top rack pictured in a ham station photo (with AGS-X receiver) in a 1934 QST magazine. The material used is .75" square mild steel tubing with welded joints. |
There were several variations throughout the AGS' short, two-year production life, mostly involving tube types and calibration procedures. The most significant improvement was the "Single Signal" AGS-X that was designed specifically for the affluent ham market (not heavily populated during the Depression.) The installation of the Lamb Crystal Filter allowed the operator to narrow the receiver IF passband considerably to improve copy in the congested ham bands. Also at this time, National started to offer ham bandspread coils for the AGS that allowed tuning the 160M, 80M, 40M and 20M ham bands spread between "20" and "120" (100 divisions) on the Type N dial (scaled 0 to 150 with 270º rotation.) Air trimmers replaced the old compression types used in the IF transformers by mid-1934. By late-1934, even 10 meter coils were being offered for the AGS. Not all airport users were satisfied with the RHM-AGS with some airlines complaining that the receiver was not advanced enough. In response, National provided an improved RHQ-AGU version with all three coils ganged together to allow easier band changing. Frequency coverage on the RHQ-AGU was reduced to 2.5mc to 6.5mc and only two coil sets were supplied with the receiver. The RIO-AGL version was a medium wave and low frequency receiver that tuned from 160kc up to 630kc in two band switched tuning ranges. The circuit was a TRF receiver with tracking BFO. All of these versions were produced in 1933 through 1934 (go to "Commercial & Military Radio Gear" for more info on RHQ, RIO, RHM receivers.) Although some AGS receivers were sold to amateurs, National obviously was aware that the receiver was just too expensive for amateurs during an economic depression. National reworked, simplified and cost-reduced the AGS design and came up with the FB-7 receiver that was priced so most hams could afford it. The AGS receivers are so seldom encountered today, it's estimated that probably no more than 300 or 400 were built from 1932 up to 1934. All of the DOC-Airways versions probably account for about another 100 receivers. The HRO receiver was in the design-phase in the late-summer and fall of 1934 and, with its introduction in October 1934 (and availability by March 1935,) the AGS receivers became obsolete commercially. The AGS-X was available from Leeds at this time (early 1935) for only $123. Although the AGS-X was a great receiver in 1933, the HRO receiver's outstanding performance had antiquated the AGS-X in a little more than one year's time. |
|
Radio Manufacturing Engineers, Inc. - RME-9D Radio Manufacturing Engineers, Inc. started in business in the early thirties, founded in Peoria, Illinois by two hams - E. Shalkhauser, W9CI and Russ Planck, W9RGH. Their first receiver, the RME-9 was designed in 1932 and was on the market by 1933. The RME-9 was a nine tube receiver with a single airplane-type tuning dial and an R-meter for measuring relative signal strength. The RME-9 featured a tuned-RF stage, two stages of IF amplification and a built-in power supply. The receiver was compactly-built onto a stout chassis made out of aluminum extrusion with the overall size of the receiver being quite small (19"W x 9"H x 10.5"D.) After some months of production and about 100 receivers produced, RME revamped the "9" and introduced the improved RME-9D. The RME-9D incorporated electrical bandspread and thus used two airplane-type dials with the R-meter between the two dials. Nine tubes were still used since the basic design remained unchanged. Five tuning ranges were provided with frequency coverage from .54mc up to 23mc. The tubes used were 58 (4), 57 (1), 2B7 (1), 2A5 (1), 24A (1) and 80 (1.) . Selling price was usually around $112 from discount houses. The RME-9D was produced from late-1933 up to the introduction of the RME-69 in November 1935. There are some minor variations that are encountered with different types of knob sets being the most common. This especially relates to the tuning knobs with the large "RME-69" type tuning knobs often found on late versions of the 9D. Like many "Depression Era" receivers, it is common to find examples of the RME-9D with modifications added. The tuning and bandspread dials are relatively small and the nomenclature is miniscule and difficult to read but the dial illumination does help. For its time, the RME-9D was a first-class receiver that introduced what became the "basic necessities" for amateur radio receivers - built-in TRF stage, Carrier Level meter, panel operated BFO, Crystal Filter and Bandspread tuning. Although not necessarily the first receiver to incorporate any of these individual features, the RME-9D was the first receiver to use all of the features together as "standard equipment" and with no external assemblies necessary other than the loudspeaker. This rapidly became more-or-less "the standard" for all communications receivers for the next two decades. The RME-9D shown in the photo is an all-original, late production version with a serial number of "431." RME receivers had a paper label on the bottom of the cabinet with the calibration date hand-written on it. The date on this receiver's tag is 9-12-1935. This is about two months before the introduction of the RME-69. Since this receiver is very late in the RME-9D production and has a serial number of 431 one can infer that the total number of RME-9D receivers built is probably around 500. The scant number of RME-9D receivers encountered today seems to confirm that production levels were very low. |
|
RME-9D Speaker - The RME speaker housing was an unusual trapezoid shape that allowed for a bench corner location to be used for the speaker and then rectangular equipment cabinets could butt against the speaker cabinet sides. The speaker utilized was an eight-inch Rola PM speaker with a large "wrap-around" magnet support structure. The transformer is a matching transformer that provides a 4000Z for the receiver output transformer impedance and an eight ohm impedance for the speaker voice coil. This same style of speaker housing was supplied for the RME-69 receiver although the Rola speaker was a more modern configuration with a much smaller magnet assembly. Luckily, a date is ink-stamped on the speaker frame - JUL 9 1935 - indicating that this speaker was probably purchased with the RME-9D. |
|
|
National Company, Inc. - FB-7, FBX, FBX-A In March 1933, National introduced the FB-7, a seven tube scaled-down and economically-built version of the AGS, offered so hams could buy a superheterodyne at a realistic price, (about $65 with accessories.) The FB-7 eliminated the RF amplifier and the AVC circuit of the AGS. Additionally, the 6.3 volt tubes of the AGS were replaced with 2.5 volt tubes in the FB-7. The extensive use of aluminum found in the AGS was replaced with sheet metal chassis and cabinet in the FB-7. The receiver used plug-in coils that are similar to the AGS coils. There were six general coverage coil sets available and identified by the prefix "FB" and the letters AA, A, B, C, D and E (AA was the 10M coil set covering 18mc to 34mc.) Or, the ham could purchase a bandspread set of coils (ID prefix "AB") for 160, 80, 40 and 20 meter coverage. The FBX Single Signal model added a crystal filter to the receiver with the controls accessible on the right side of the receiver cabinet. The FBX came out after James Lamb's article in QST about Single Signal receivers and crystal filters. The IF was 500kc for the FB-7 and approximately 495kc for the FBX depending on the particular crystal used in the Crystal Filter. The BFO frequency control is a knob on top of the BFO coil can and is accessed under the lid. A matching National pre-selector was available, the model PSK, that added a TRF stage to reduce the image problems but it required its own set of plug-in RF coils. The PSK was usually bolted to the right side of the FB-7 using standoffs - long standoffs if it was an FBX so the operator could have access to the crystal filter controls. Though many hams preferred using earphones, the FB-7 would drive a loud speaker quite well with the proper power supply. At least three different models of AC power supply were offered that could operate any of the FB-7 receivers but the 5897AB was recommended since it provided sufficient B+ voltage to allow the type 59 audio output tube to develop sufficient power to drive a loud speaker - about +240vdc. Most of the 5897AB power supplies that were sold with FB-7 receivers have a tag on top stating the the 5897AB was "designed especially for the FB-7." An "A" suffix to the FB-7 or FBX designation denotes the use of National's improved IF transformers that utilized air-spaced trimmers rather than compression trimmers. The receiver shown is an FBX-A from 1934. The FB-7 and its variations were very popular and found in many ham shacks in the mid-thirties as evidenced by the examination of 1930s QSL cards. |
|
||||
Patterson Radio Co. - All Wave 10, PR-10 & PR-10 Pre-selector Emmitt Patterson started Patterson Electric Co. in 1920 but renamed the company in the mid-twenties as Patterson Radio Company and began selling radios as a dealer. Around 1930, Patterson began building his own All Wave entertainment radios at the Gilfillan plant in Los Angeles. Patterson decided to enter the short wave amateur communications receiver market in 1933. Introduced in May 1933, the PR-10 was designed by Engineer Ray Gudie and featured a 10 tube circuit with R-meter, IF gain control (no RF amp), single 59 audio output built onto a chrome plated chassis. Performance was very good (especially for 1933-34) but by adding the PR-10 Pre-selector, with its two RF amplifiers, one could have a first class receiver. The initial models were slightly different and were designated as the "ALL-WAVE 10." The AW-10 didn't have a chrome plated chassis or the Manual Gain control (the AVC was always on - like a broadcast radio.) The AW-10 was probably produced for a few months before it was replaced with the redesigned version designated the "PR-10." The updates included the ability to disable the AVC allowing control the front end gain manually. This was particularly necessary for good CW reception and, at the time, virtually all ham communication was by CW. Other upgrades that were incorporated by 1934 were the reduction of the BFO coupling capacitor value to allow more sensitivity for CW reception and changes in the AVC time constant capacitor. With the designation PR-10, the chassis was then chrome plated. The PR-10 Pre-selector didn't change during production although there are some variations in coil diameter and under chassis component placement depending on early or late production. Like other West Coast radio builders, Patterson's documentation was never updated therefore the "one and only" schematic has several errors when compared to the actual production models.
|
|
|
||
W7FM - Homebrew Transmitter-Receiver (TX-RX) Some homebrew ham equipment was so well-engineered and so well-built that in some cases it's difficult to image that the gear isn't commercially built. It's extremely fortunate that some former owners have had the foresight to save and preserve these superior examples of amateur engineering. The W7FM Transmitter-Receiver is an amazing example of efficient packaging and shows the creativeness that was necessary during the Depression to build quality, compact, useable gear. W7FM, Don Thorton of Spokane, Washington, decided to build a two-tube regenerative receiver and a four tube (crystal controlled oscillator, buffer and parallel power amplifier) CW transmitter both with their own individual AC power supplies. Not particularly unusual in the early thirties. But how about installing everything into a 1927 Kemper Radio Company K-5-2 cabinet. The original Kemper K-5-2 was a portable five tube battery operated TRF radio in a leatherette covered wooden box that featured a removable front cover and removable back cover. W7FM built the two AC power supplies into the lower section of the K-5-2 cabinet where originally a folded horn speaker and battery storage was located. In the upper section of the cabinet as viewed from the rear (shielding removed for photo) on the right is the two tube receiver and to the left is the four tube transmitter. What is amazing about the packaging is that full shielding was accomplished by building the entire TX-RX into a metal box that fits exactly into the Kemper K-5-2 cabinet. The entire receiver and each section of the transmitter are contained in shielded compartments. Looking deceptively light-weight, this TX-RX runs the scales up to an incredible 70 pounds! Full metering is provided with three panel meters. Six plug-in coils are required with two needed for the receiver and four for the transmitter. There are two complete sets of coils that were built for the TX-RX. Behind the speaker grille (with the "W7FM" embroidery) is an armature-pin speaker for receiver output. Separate receiver and transmitter antenna inputs are used. The receiver uses a type 27 for the regenerative detector and a type 47 for the audio output. The transmitter uses a 59 crystal oscillator, a 46 buffer stage and a pair of 45s in parallel. A hand-drawn schematic of the transmitter shows parallel 10s but Don Thorton probably decided that the 7.5vac filament voltage required for the 10s was impractical and went with 45s to keep all of the filament voltage requirements at 2.5vac. An 83 is used for the transmitter power supply rectifier and a type 80 is used in the receiver power supply. Note that the receiver power supply is built from old RCA Radiola parts. Thorton probably built his TX-RX around 1934 judging by the circuits and the parts used. Don Thorton became an SK around 1940 and his son, Doug, was too young to remember his father using this TX-RX. Doug himself tried it out when he was in high school. The receiver worked fine and a friend listening on another receiver in town "thought" he copied the signal from the transmitter. Doug didn't have a license, so he didn't perform more than just the one test. Since then, the TX-RX has not been powered-up. Doug Thorton donated his father's homebrew TX-RX to the WHRM in October, 2010. Stay tuned for updates on this unit's functionability as we'll attempt to have it running soon. |
|
|||||||||||||
National Company, Inc. - HRO, HRO Senior, HRO Junior - (1935 up to 1941) National announced the HRO receiver in October 1934 and began production in January 1935 with the first receiver deliveries happening about March 1935. James Millen (at National) headed the mechanical design team and Herbert Hoover Jr. (on the West Coast) was in charge of the electrical design team. Millen and Hoover believed the best receiver performance was obtained using plug-in coils thus eliminating the losses found in most bandswitch circuits of the day. The HRO design also used a separate power supply in order to keep heat and hum out of the receiver. The HRO also used only the necessary number of tubes and all stages are run at maximum efficiency which lowered thermal tube noise and increased the signal to noise ratio. Many hams regard the HRO as the best of the pre-WWII ham receiver designs because of its great sensitivity with low internal noise along with its tremendous bandspread capabilities available on 80M, 40M 20M and 10M. It was an expensive receiver selling for about $200 with power supply and four coils in 1936. The HRO used 10 tubes (nine in the receiver and one in the PS) and featured double pre-selection on all of the plug-in coil sets. Plug-in coils for several frequency ranges were available and either general coverage or amateur bandspread were selectable on the amateur coil sets (A, B, C and D sets) by relocating four "jumper screws" on top of the coil assembly. The micrometer dial was based on a Sperry Gyroscope design (National's version was successfully patented) and the National version was very smooth in its operation. The PW-D (National's term for the micrometer dial) had a scaled range of 0-500 that gave the user the equivalent of a linear dial twelve feet long. The precision nature of the PW-D readout allowed for extremely accurate reset capabilities. The PW-D numerical readout was correlated to frequency graphs that were mounted on the front of each plug-in coil set allowing the user to determine the receiver's tuned frequency. For hams, the dial readout vs. frequency graph allowed the operator to figure out where he was tuned and was probably as accurate as most direct readout dials of the day. Of course, most hams then were using crystal controlled transmitters and knew their operating frequency anyway. The HRO was one of the first receivers produced to feature double pre-selection, that is two TRF amplifiers, which reduced images to a minimum. Many hams were using earlier-type receivers with a separate after-market pre-selection to achieve what the HRO was already equipped with. The band spread feature was based on what National had been offering with the FB-7 and AGS receivers. The HRO increased the band spread to the point where each of the 80M, 40M, 20M and 10M bands were covered in 400 divisions of the PW-D. This was equivalent to a linear dial that was nine and a half feet long. There were several minor changes incorporated into the HRO from its 1935 introduction up to WWII. Each production run of receivers were identified by the prefix of the serial number starting with "D" used on the first production run. The first three production runs had coil assemblies with white background graphs with black nomenclature, a nickel plated micrometer dial, black chassis, round IF cans, a "NC" on the dial pointer and a non-illuminated S-meter. The "pearl button" switch for the S-meter was on the first two runs (D and E.) The pilot lamp was installed on the third run (F.) Also with Run F, the 2nd detector wiring was slightly changed to reduce AF Gain adjustment noise. Run H was the last to use the plated PW-D. Run J saw the introduction of the lacquer painted PW-D. The subtle shading of the black only shows in flash photos*. In regular room lighting the PW-D paint appears black. In 1937, the S-meter became an illuminated unit and the following year the identification tag was added to the upper right corner of the panel. Initially, tubes used were 2.5v filaments if the AC power pack was used or 6.3v if battery operation was necessary but later either 2.5vac or 6.3vac tubes were optional. By the late thirties, only 6.3vac tubes were used. Millen believed that a lower noise figure was achieved using the 2.5vac tubes but later recanted this opinion as the 6.3vac tube quality improved. From the start, a rack mount version was also offered - it featured a crackle-finish, aluminum front panel.
|
W6HLJ's Homebrew One Kilowatt Transmitter - 1934 |
|
Alvin Norberg, ex-W6HLJ, began building this professional looking transmitter in 1934 upon graduating from Manteca High School. He worked as a laborer for Spreckles Sugar Company to earn the money to buy the parts needed. A few years later he was graduating from UC Berkeley as a BSEE (1939.) The transmitter construction is entirely made out of wood and masonite. Each section of the transmitter is built onto a wooden base (with the masonite front panel attached.) Each section slides into place on guides. The cabinet is made out of 1"x12" pine painted black. Al tried to duplicate the look of a Bell Labs rack out of wood. Symmetrical layout with matching meters, function ID tags, 4" diameter knobs and purf-metal viewing ports added to the professional appearance. Al baked the wrinkle finish paint inside his mother's wood stove oven. Al said,... "When the transmitter was keyed all of the meter needles swung together and the mercury rectifier tubes flashed their blue light. When the key was held closed the plate of the final amplifier Heintz & Kauffman HK-354 would glow red! WOW!" Inside the transmitter the circuit is a crystal-controlled 6L6G oscillator that can be front panel switched to three different plug-in crystals. The buffer stage uses a Western Electric 211-D and the final amplifier is a Heintz & Kauffman "Gammatron" HK-354. The transmitter is CW only and originally ran 1 KW input power or about 700 watts output power. The PA plate condenser is homemade and was built by a machinist (the father of a friend) who made a gift of the precision made condenser. The plate transformer was a salvaged "peg-pole" transformer that was used to provide around 4000vdc on the plate of the HK-354. Unfortunately later in the transmitter's life, the original plate transformer was removed to lighten the total weight for easier moving. |
|
Update for July 2013: Al Norberg, at the age of 97, is still a registered EE with the state of California. He recently (June 2013) donated his Speed-X bug that can be seen in the B&W photos and also the National Type-N dial that can be seen on his homebrew three tube receiver that is in the B&W photo. Unfortunately, the receiver was "parted out" years ago but building a duplicate is a possibility. The transmitter has been moved and is now at our new QTH in Dayton, Nevada. The top half of the transmitter is restored but the power supply section is still awaiting rebuilding before a test transmission could be made. Go to our webpage "Telegraph Keys" to see a close-up photo of the W6HLJ Speed-X. Navigation link in the index at the bottom of this page. |
|
|||||||||||
Breting Radio Manufacturing |
|||||||||||
Paul J. Breting started selling communications receivers in 1935. Breting Radio Manufacturing didn't have the necessary RCA Superheterodyne license so their receivers were assembled at the exclusive "RCA licensed" Gilfillan plant in Los Angeles, California with Breting operating as a "sub-contractor" protected by Gilfillan's license. Breting was able to take advantage of Gilfillan's production processes, stock inventory and tooling while building his receivers. Ray Gudie, who was famous for the Patterson PR-10 design, was Breting's chief engineer. Gudie came over to Breting after a wage dispute with Emmitt Patterson. Gudie felt the success of the Patterson PR-10 should have warranted him a salary increase. The PR-10 was quite a popular communications receiver that sold very well but Patterson disagreed that it warranted a pay raise for Gudie. Patterson's disagreeable manner in the matter caused Gudie to resign and go to work for Paul Breting (both Patterson and Breting were located at the Gilfillan plant, so Gudie didn't have to go very far to be hired by Breting,..probably just across the hall.) The Breting 12 was Gudie's first major design for Breting and it was introduced in 1935. The advertising hype for the Breting 12 used the impressive description "Scientifically Correct D-X Radio" but exactly what that meant is vague. The list pricing for the Breting 12 shows several options. The receiver chassis without cabinet, meters or crystal (this meant the entire crystal filter unit, not just the crystal for it) was $135. The crystal (filter) could be added but not the meters for just the chassis with no cabinet for $145. The cabinet version could be purchased without the crystal (filter) for $145. The complete receiver listed for $155 but if the purchaser was a ham or experimenter a 40% discount was offered that reduced the cash sale price for the complete receiver to only $93. Most dealers seemed to offer the complete Breting 12 for about the same discounted price with perhaps a slight markup but still less than $100. All options included a 12" speaker and all of the vacuum tubes. Prices are from the Breting 12 sales brochure and old QST magazines.
|
|
Patterson Radio Co. - PR-16C Patterson introduced their 16 tube receiver in 1935. After engineer Ray Gudie left Patterson over a wage dispute, Emmitt Patterson tried engineering the new PR-12 Communication Receiver himself but soon discovered he was completely out of his element. Though the PR-12 Communication Receiver appeared in a few advertisements in late 1934 it was never in production. A few prototype PR-12 Communication Receivers have turned up but they appear crude and not like a true production receiver. Also, Patterson did produce a 12 tube All Wave receiver that was generally housed in a floor model wooden console cabinet and this chassis is sometimes erroneously referred to as the PR-12. The PR-12 Communications Receiver was a different design that probably never went into regular production. Patterson hired Karl Pierson to complete the PR-12 Communication Receiver but Pierson took one look at it and scraped the whole project. Karl Pierson then designed the PR-16 in just a few weeks as the "new" Patterson receiver. The PR-16 featured parallel RF amplifier tubes (2-6D6s) which, in theory, increased the gain and reduced thermal noise. It also allowed the receiver to be advertised as having two RF amplifiers, even though there was only one set of RF coils per band and the receiver is essentially a single preselection front-end. The incredible audio section has three stages of Push-Pull audio using a 6A6 dual triode, two 76 triodes and two 42 output tubes supplying 18 watts of low distortion audio power (some early versions had P-P 6A3 tubes.) The BFO adjustment is a "swing-arm" lever accessed under the cabinet lid. Chrome chassis, band-in-use dial masking, illuminated R-meter, crystal filter, two-speed tuning - all for the low price of $101.70 (1936 price.) Even though the parallel RF amplifiers are unconventional - no other manufacturers ever tried to market the configuration - the PR-16C is a good performer with decent sensitivity, nice mechanical bandspread and powerhouse audio. The lack of visual appeal, a result of stodgy styling comprised of a bleak front panel with miniscule dial apertures and numerous large louvers placed on all sides of the cabinet, has relegated the PR-16 to collector's "least favorite" of the Patterson communication receivers. Patterson even offered the PR-16 in a floor console cabinet but not many were sold. At any rate, the PR-16 may be an "ugly" creation but its performance helps it to win favor,...eventually. Built at the Gilfillan plant. This PR-16C belonged to W6BBK, who bought it new in 1936, using part of his WWI veterans bonus to fund the purchase. |
|
||
Doerle Globe Circler In the 1930s, Walter C. Doerle of Oakland, California, came up with several types of regenerative detector receivers for the "homebrewer." Hugo Gernsback published a book (in 1935) that was titled "How to Build Four Doerle Short Wave Receivers" and it became a very popular publication. In fact, the Doerle-circuit receivers became so popular with "homebrewers" that some builders started "Doerle Receiver" clubs. The receivers generally were a regenerative detector in combination with a single stage of audio amplification. The antenna was capacitively coupled to the plug-in coil so no primary winding was used on the single RF coil but a tickler coil winding was used. Usually, type-30 tubes were specified but 201A tubes or 99 tubes were also sometimes used by builders (although they didn't have the gain that type-30 tubes did.) To keep costs down, the Doerle receivers were almost always battery-operated. Audio reproduction was for a Hi-Z headset. Doerle did come up with many improvements to the design by adding a RF amplifier and AC power supply as part of the plans. Like any homebrew or kit, Doerle receivers are unpredictable as performers. Most homebrew builders weren't radio engineers or technicians. They weren't experienced assemblers like those that worked in radio factories so many homebrewers lacked the basics in good soldering ability. Most homebrew builders during the Depression didn't have any test equipment. Careful winding of the coils required experience and well-made coils helped to provide the best performance from the simple Doerle circuit. Doerle himself states that the coil wire, the coil forms and careful winding were necessary for top performance from the receiver. Since many homebrewers lacked basic electronic skills, very few adhered to layouts or even read the instructions or understood the information provided. So, most of the Doerle receivers will have a variety of problems from wiring lead dress and component placement to fundamental wiring errors. Plus, since the receivers were usually built during the Depression, used parts and sometimes wrong component values were used since the builder probably couldn't afford anything else.
Many radio enthusiasts still build Doerle regenerative receivers. Some builders prefer to use mostly vintage parts while others, trying to get "the most" out of the circuit, use modern equivalents. There's ample info on the circuits and performance reviews on the Internet. Typical of 1930s radio write-ups, don't expect a lot of theory or details on circuit function from the Doerle book (yes, I've read it.) It's written in the vernacular of the radioman of the time and is humorous in its style. It's a little short on theory but there's enough building data for a homebrewer to complete a receiver that would function as described. Doerle probably didn't know much more than the average well-experienced ham of the day when it came to the theory of receiver design but he did know "receiver construction" and how to get the most out of a simple, two-tube receiver. NOTE: Where the heck did I find this Doerle Globe Circler? Of all places, right here in Dayton, Nevada. Around 2015, there was a massive "yard sale" here in Dayton. But, it was so massive it was being held in a vacant field a mile or so away from my QTH. There was an incredible amount of "stuff" just laying around in the field. From barbeques to horse saddles, old barely-running cars to house electrical and plumbing items. But, there were a lot, and I mean a LOT, of vintage electronics and ham gear also laying around in the field. I talked to the guy running the "sale" and he said all of the electronics had come out of a house and garage in Silver City, Nevada (halfway between Dayton and Virginia City.) There were several pretty nice ham-related items including a few boatanchor receivers and a lot of test gear. A real surprise was this Doerle receiver in amongst the junk parts. Price? $5.00. |
|
||||||||||
When completed, the Tobe Model H had one RF amplifier, a Converter stage, a single IF amplifier, a single detector, BFO, a first AF stage, an AF output and a power supply rectifier. After alignment the sensitivity was rated a 1uv and with the very selective RF tuning, along with the tertiary LC electrostatically-coupled IF transformers, the bandwidth was fairly narrow. The later 1936 versions of the Model H were also available with air-tuned trimmers for the oscillator circuit for better stability and accuracy requiring the Type 2A LO assembly be added to the 35H tuner which added about $10 to the selling price of the kit for a total of $56 for the metal tube version with air trimmers (called the "TOBE Special.") Tobe Deutschmann mentioned that a Crystal Filter IF transformer that was going to be available but it was never shown in their advertising as an option. Audio output was rated at 3 watts (with either a 2A5, a 42 or a 6F6 output tube) driving an electrodynamic speaker with a field coil resistance of 1750 ohms.
|
Line-Bucking Transformer - Most of the radio equipment made in the 1930s was designed for 110vac or perhaps 115vac. Nowadays, most house line voltage runs over 120vac with some areas even pushing up to 125vac. The earlier radio equipment, if operated directly on today's "high line" AC house voltage will experience the following,...higher tube heater voltage, brighter dial lamps (resulting in higher heat,) elevated B+ levels, possible audio distortion due to skewed bias voltages and higher heat levels during operation. Most of the time the operation of pre-WWII gear is limited to testing or displaying the set in operation. Usually limited time operation at slightly higher AC line voltages doesn't cause too many problems. However, if long periods of operation are planned then maybe the higher AC line voltage might be a consideration. Of course an autotransformer (Variac or Powerstat) could be used but those are nice items for the test bench and probably shouldn't be tied up adjusting the line voltage. A "Line-Bucking Transformer" (LBT) is an easy way to adjust the line voltage down by whatever voltage the secondary of the LBT is operating at. For example, if a 6.3vac filament transformer is used it could be set up to lower a 122vac line down to 115vac. A 12.6vac filament transformer could be used to lower the same 122vac line to 110vac. The connections are very easy and finding the desired filament transformer is usually an inexpensive purchase. Additionally, the current rating of the filament winding allows a relatively small filament transformer to be used in a "bucking configuration" to operate a single piece of equipment. A 3A winding on a 6.3vac transformer is close to 20 watts of dissipation (just for the 6.3 volt drop) and would easily operate a typical receiver that dissipates around 100 watts to operate. If a large filament transformer is available, the output could be routed to a switchable power strip allowing several items to operated at the lower AC line voltage. Be sure to include a switch on the house line input side of the LBT. Lots of info on the Internet about LBT hook-ups. |
Pre-War Ham Gear Part 2 Return to Home Index
|
Radio Boulevard
Western Historic Radio Museum
Vintage Radio Communication Equipment Rebuilding & Restoration Articles,
Vintage Radio History and WHRM Radio Photo Galleries
1909 - 1969
- 60 years of Radio Technology -
This website created and maintained by: Henry Rogers - Radio Boulevard, Western Historic Radio Museum © 1997/2025